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The problem of determining the plasticity limit of a composite medium is considered. 
Utilizing the variational principles of ideal plasticity theory [Z], a dissipative function 
of the macromedium is found, which contains rigidly plastic components. Problems of 
this kind were investigated for the case of an elastic medium in 12, 33. 

I, Let components of an ideal rigidly plastic medium with different plasticity limits 
fill an infinite Euclidean space at each point zi l The components of the medium are 
strongly connected and satisfy the Mises plasticity condition 

SijSij = (k’ + IC’)’ 
0.1) 

where s+j is the stress deviator, k” the average plasticity limit with respect to the volume, 
k’ the fluctuations in the plasticity limit which are assumed to be homogeneous random 
functions. 

Let us apply the variational principles of plasticity theory to calculate the dissipative 
function of the macromedium. On the boundary of some volume V let a velocity field 
Pi0 be given which corresponds to the homogeneous state of strain a$. The actual field 
of strain rates satisfying.the prescribed boundary conditions corresponds to the minimum 
of the functional [l] 

(k” + k’) mj Cl’ 

v 

62) 

For a sufficiently large volume V the integral (I. 2) can be considered the dissipation 
density which corresponds to the dissipative function of the macromedium LI (a$). 
Let US take eij = a$ in (1.2) (this corresponds to the Voigt average in the case of an 
elastic medium), then we obtain the upper bound for the dissipative function from (1.2) 

D (ejj”) <k* f/eijOEij (4.3) 

We obtain as a corollary of the second theorem on ultimate equilibrium [I] that the 
flow surface of the macromedium corresponding to the dissipative function D (e$) lies 
within the Mises flow surface Sgj”S$ = k’*. 

Let us examine the average for a constant stress field oij = o$ (in the case of an 
elastic medium this corresponds to the Reuss average), then we obtain from the first 
ultimate equilibrium theorem that the statically safe field oij” should satisfy the con- 
dition sijOsijO = k *, where k* is the least plasticity limit of the medium components. 

Therefore, the flow surface of the macromedium lies between Mises cylinders of radii 
k” and k*. 

Let us utilize the condition of minimum of the functional (1.2) to calculate the dis- 
sipative function D (e$) ap~o~mately, 

Let us represent the integrand in (1.2) as a Taylor series in the fluctuations k’, 

Cij’ (Ejj = Eij* -f- eij’) , and let integration extend over the infinite space. 
By virtue of the homogeneity of the random functions and the boundary conditions, 

the average with respect to the volume and the mathematical expectation will agree. 
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The relation (1.2) may now be represented as the series 

D.(8U”) = k”Jo + (k’e <e,j’em$ + . . * 

Jo- fw (iA\ 

where the anguhr brackets &note the average. 
All the mommts of thcb raudom kxuations not above secood order am writun down 

in (1.4). Ths fiuctuatio~~ are assumed sufficiently small so as to gtwwee conv~rgcna 
of tha series (1.4). 

1. Let us assume that the fluctuations in the sws deviator can be repeaented appw 
timately as s..‘- 12 - S$ij’ + %fjK (24 

where the wantitfes qot qfj. must ne constaut by v&tue of the homopneity of the ran- 
dom fimctions u&et wnsidetatian. Tha ~~.d~~~rn~~~ 
sf minimum of the functional (1.4). 

Since the mean sueases are constant, the fluctuathns S'ij must satisfy the equilibtium 
equations ‘:*+‘&,j+Qk:j=O (2.2) 

I&t us app& the cumpatlbil&y and incompressibility equations 
* 

8-.=iJ~(UCj+vj,i) f&=0 rt (2.3) 

whe.rc a’, $4 are the fiuctxiations in the hydtostatk v and the velodtp fietd 
We obtain t&e sokutkan of the system of eqwiaw (2.2). (2.3) by u&n* Fcmrim aans- 

forms, whete ki denotes the tlaatkrmati~ param@ars in the thtca variabt y . The 
solution of (2.3), (2.2) is of the form 

co 

where x’ is a fknctlon of the variables kf &fining the spccirral de~rn~~~ of the tau- 
dom fuuction 00 

K= 
s_ 

x~Likaxn & (2.5) 

IDtegfatioo is over the whole space of the variables ki. 
Let us assume the random function k’ to be &otropic, then [4f 

<x'(~)~'(k')> =-h(m)8 (ki -ki’) 

where A f=) is the spectral den&y of the function k’. 
Since the B--function &om (2.4) and (2.5) em= into (2.6), we obtain 

(2.6) 

00 

<Weti') =$ 2 
"fkjkkkin 

m b - kikk%k - kjkk%k 
A 04 ---yak (2.7) 

Evaluation of integrals of the form 

is required in the sequel. 
Aa 

Since A (m) is an isotropic funcdon, the fntegral under cousiderat%on Is an isotmpic 
tausar symmetzk in all subscripts. 
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An isotropic tensor with constant components can be represented as a linear combina- 
tion of products of the tensor 6ij. After .SymmeUiZatioiI with rfqX?Ct to au SubSCriPtS, Wt! 

find that the tensors under consideration are proportional to the following: 

6 ijkm = ‘ipkna + %k’jm + ‘hn6jk 
6 ijkmnp = ‘$kmnp + 6i k6jmnP + %n6jkhp + GinSjkm~ + 'iP'ikmn 

6 ijkmnpqr = bijskmnpqt + 6tk’jnwwqr 0.Q) 

The integral (2.8) can now be represented as 
A tjkmnpqr = A’ijkmnpqr (2.10) 

Integrals for the form (2.8) which contain a lesser number of pairwise products of the 
vectors ki/ m, can be evaluated by means of a convolution of corresponding subscripts 
in (2.10). The relations 

6 
ijhnPQQ = %kmw’ 6 ijkmnn = 76ij-V G,jkk = 56ij (2.11) 

should hence be utilized. 
Taking into account that 141 00 

s 
h(m)dk=dS 

where d is the variance of the random function k’, we obtain from (2.8),(2.10) and 
(2.11) 9.7.5.34 = d= (2.12) 

Utilizing the properties of the tensors (2. Q), we obtain the following identities : 

~~~p~ijo8~~~jk~~ ‘fE~,-“~j)’ + erj”8*n *D rl + e*jOu&~~j~Tt~* kj b 

6 *j~*p~~~~~E*jo8*~o - 2 (e~j”$jfe f ~~k’~~~qjk~~ +6*joe*r*%rVj* 

6 (jkmnpqr%joEb~km%~ 
= 4sijee;joetlk,qkn, + 8 tetj”Q12 + 3aik08{m?ak9,, f (2.“) 

+ 16e*joE&l)in?‘jm 

8, Let us evaluate the moments of the random fluctuations in (1.4). The integral 
(2.7) is evaluated by means of (2.8). (2.10)-(2.12) 

<k%$) = - g qij (3.1) 

Utilizing the identities (2.13). the moments <a’+j a’&, a; a;= < <B’rj a’==) are ana- 
~OgO~ly evaluated, We finally obtain the dissipative function (1.4) in the form 

D_k”Jo_?!!!$h+~ 
0 

{‘/Svi jvi j - l/1)*6 [‘VijVij + 70 (CijVij)’ + 460,~ cIkvj,vjk + 

Let us assume the fluctuations in the plasticity limit to be smait Then to second 
order aecuracy,(3.2) will be a quadratic form in the variables vi& Since ctj < i, and 
the numerical coefficients of the components in the square brackets of (3.2) are small 
compared with lI&, the expression in the braces is approximately equal to the positive 
definite quadratic form l/s vijvij - 

Taking account of this estimate, we write 

D==k’Jo+ 
fl @‘vi jv+3 - 2aifvt j) 

5Jo (3.3) 

The m~imum value of 13 will be 
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The dissip8tive fnnotion (3.3) corresponds to the M&W plasticity condition. The p&s- 
ticity limit o8n be expressed by means of given czomxnuatio~~ and plasticity limits of 
each component. In the c8se of a two-component medium the plasticity limit is cahx- 
Wed by means of the formula 

k - ah + CJrr - 
ws (k1- h)” 
5 (& + e+kr) (3.5) 

where ei. cs, 4, k, are the ~~~n~8ti~ and p~~~~ limits of the casing oom- 

porEem% 
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Orthogon8iity relationships are derived far the extended eigenvectors of problems on the 
deformation of 8 strip, a circul8r reot8ngk: and the &symmetric deformation of a cy- 
Under under homo~ne~ bound8ry ~ouditi~ in the d,ispl8cements, 

The problem of the simult8neous decomposition of the bound8ry conditions given on 
p8rts of the surface of an e&stic body into a series of nonor&ogooat ~~~ sotu- 
tfons is solved only for certain classical problems for definite combfnations of the bound- 
ary conditions. In the c8se of the pkne problem of the theory of ehxsticity for a strip, 
such decompositions 8re realizable becisuse of the generalized otthogonality relationship 
of Papkovich (l-43, A similar relstionship for the axisymmetric problem of a cylinder 
is obtained in [5] and generalized in [6& However, the mentioned o~~n8~~ relation- 
ships do not allow s8tisf8otion of arbitrary bound8ry conditions ex8ctg on ail Nf8Ws 
of an el8stic body of finite size. 

Of interest in this respect 8re the orthogonaiity rel8tionships of extended eigenvectors 
of bounduy value ptoblems. The elasticity theory equoticnw admit the non-unique eon- 
struction of such vectors. Thus, Little and Chiids [?, 81 construct a system of extended 
eigenvectors which ate orthogomtf to the vectors of the conjugate problems. The autboEzI 
calied such orthogob8Uty re4t%md’1ips biortbogonality. 

The method developped in JQ], which permit8 conatruotion of a system of extended 


